Elastic analysis of the energy and relaxation of stepped surfaces

نویسنده

  • D. J. Srolovitz
چکیده

We present an analytical, elastic analysis for the energy and relaxation of stepped surfaces. The analysis is based upon the observation that the most prominent feature of the non-reconstructive surface relaxation consists of the atoms at the top of the ledges relaxing inwards toward the bulk. This is modeled by replacing the true atomic structure with a continuum elastic half space subjected to a periodic array of line forces (with the periodicity of the steps) directed normal to the free surface. This mode1 is then employed to determine the stress, strain and displacement fields and elastic energy associated with the surface relaxation. We find that the stress and strain fields decay quick& into the bulk as Y e‘, where Y is the distance from the surface normalized by the interledge spacing. The surf&e energy is largely controlled by the terrace energy and the ledge energy, while the ledge interaction energy decays as the inverse square of the ledge spacing. The elastic model provides an accurate description of the wavelength, phase and decay rate of the surface relaxations compared with atomistic simulation results for metals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency Analysis for a Timoshenko Beam Located on an Elastic Foundation

It is quite usual to encounter a beam with different types of cross section or even structuraldiscontinuities such as a crack along its length. Furthermore, in many occasions such a beam mayhappen to be exposed to the oscillatory fluctuations. Therefore, any information about its naturalfrequencies may be worthwhile. Amongst the problems of discontinues beam analysis, in this paper aspecial kin...

متن کامل

Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...

متن کامل

The Study of Energy Loss in Stepped- Labyrinth Spillways

A ‘spillway’ is a structure used to provide the controlled release of flood water from upstream into downstream area of a dam. As an important component of every dam, a spillway should be constructed strongly, reliably and efficiently to be used at any moment. Labyrinth and stepped spillways are presented as appropriate modifications to those spillways hardly capable of managing the maximum pot...

متن کامل

Stepped Spillway Performance: Study of the Pressure and Turbulent Kinetic Energy versus Discharge and Slope

In the present study, flow over flat and pooled stepped spillways was simulated three dimensionally. The VOF method and k- ε (RNG) turbulent model was used to simulate the flow over the stepped spillway. The results indicated that the numerical model was acceptably capable of simulating the flow over the pooled and flat stepped spillways for different discharges. Following that, the effect of d...

متن کامل

Influence of Slope and the Number of Steps on Energy Dissipation in Stepped Spillway Using Numerical Model

Recently the stepped spillways have been used as an appropriate solution for energy dissipation. In the present study, Siahbisheh dam spillway is simulated by using Computational Fluid Dynamic (CFD), in which the Mixture method and Reynolds Stresses Model (RSM) turbulence model is used. In the first modeling series the over all steppes slope is constant. The number of the steps is increased to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002